
Data+AI: LLM4Data and Data4LLM

Guoliang Li, Jiayi Wang,

Chenyang Zhang

Tsinghua University

Jiannan Wang

Simon Fraser University

LLMs Are Revolutionizing Data/Database Systems

❑ LLMs are revolutionizing data management systems due to their:

• Text → Semantics: Semantic understanding capabilities

• Retrieval → Reasoning: Reasoning and planning ability

• Vertical domains → Multiple domains: Adaptability for supporting various tasks

• Closed World → Open World: Generalization capabilities

https://klu.ai/glossary/large-language-model 2

LLM4Data: LLM Capabilities – Semantic Processing

J. Wang, G. Li, and J. Feng. idatalake: An llm-powered analytics system on data lakes. Data Engineering, 2025
3

❑ Traditional data management can only get results exactly in database

❑ However, semantic processing is crucial to discern nuances, context

and subtleties that are typically challenging for traditional ML models

Analytics Query

What percentage of papers

at SIGMOD 2025 are

related to data and AI?

Data Lakes

LLM4Data: LLM Capabilities – Reasoning (Inference)

Sun J, Zheng C, Xie E, et al. A survey of reasoning with foundation models[J]. arXiv preprint arXiv:2312.11562, 2023. 4

❑ Conduct multi-step reasoning

❑ Perform better on logical, mathematical or programmatic tasks

LLM4Data: LLM Capabilities – Adaptability (Knowledge)

https://hub.baai.ac.cn/view/24150 5

❑ Extensive knowledge coverage due to diverse datasets

❑ Enable LLMs to understand and process various queries and tasks

LLM4Data: LLM Capabilities – Understanding & Generation

Siren's Song in the AI Ocean: A Survey on Hallucination in Large Language Models. CoRR abs/2309.01219 (2023)
https://promptdrive.ai/llm-limitations/

6

❑ Beyond comprehension, LLMs are capable of generation

❑ LLMs can create human-like text in response to prompts

• Can be utilized in data management for generating reports, automating

data documentation, and even crafting queries in natural language

Input SQL:
SELECT … FROM emp WHERE empno IN

(SELECT deptno FROM dept …);

Rewrite Analysis:
… Convert the sub-query into a join

 between the "emp" and "dept" tables …

Rewritten SQL:
SELECT … FROM emp INNER JOIN dept

ON … AND emp.empno=dept.deptno;

· Supervised Finetuning

· Reinforcement Learning

· Active Learning

 …

R-Bot

Case Generation

Databases Rewrite

Engines· PostgreSQL

· MySQL

 … Expert Experience

Rewrite

Rules· Oracle

· SQL Server

 …

Feedbacks

Cases

Text2SQL Query Rewrite Diagnosis

LLM4Data: LLM Capabilities – In-context Learning

7
Xuanhe Zhou, Zhaoyan Sun, Guoliang Li. DB-GPT: Large Language Model Meets Database. Data Science and Engineering 2023.

❑ High-Quality Prompt can instruct

LLMs to optimize DB tasks without

training

➢ Zero-shot Prompting

• Input LLM with a task description, without

training over labeled data

• Instruction Prompting

• Input LLM with explicit instructions on

approaching the task, e.g., detailing the

format, tone, or type of output response

➢ Few-shot Prompting

• Provide LLM with a few examples of the

task within the prompt to guide the model

on how to generate responses

LLM4Data: Motivation and Opportunities

Zhou X, et al. A Survey of LLM x DATA. arXiv, 2025 8

❑ Opportunities of LLM for data management

• Automatic planning for data preparation

• Discovery, cleaning, integration, mixing, standardization

• Semantic data analytics of unstructured data, structured data, data lakes.

• Natural language based query optimizations

• Data interpretation and insights

• Data/Database System optimization

• Tuning, Diagnosis, Optimization

LLM4Data: Challenges and Solutions

Siren's Song in the AI Ocean: A Survey on Hallucination in Large Language Models. CoRR abs/2309.01219 (2023)
https://promptdrive.ai/llm-limitations/

RAG, Write instructive prompts to ask for source/evidence or call tools …

Task decomposition; Prompt for multiple times and Vote; Self-Reflection …

Cache and reuse historical messages …

Task decomposition; Provide reasoning process examples; Prompt engineering …

RAG …

Chunking; Embedding; Prompt Compression; RAG + Vector Databases …

Resource

9

Give conflicting outputs for very similar prompts

Generate text that seems realistic and plausible but is actually inaccurate

Cannot automatically retain information from previous chats or update in time

Struggle with tasks requiring complex reasoning, multi step problem-solving, …

The knowledge LLM used can be out-of-date, because the new knowledge is
learned in batch for traditional model finetuning

Billions of parameters to update → LoRA; RAG …

Have memory limits on how much text they can process at once

1. (Incremental) Pretraining 2. (SFT/RLHF) Finetuning 3. (RL) Post-training

5. RAG

• Common Knowledge Acquisition

• Understanding Diverse Texts

• Instruction Following

• Task Adaption like Traslation/Q&A

• Align with human preferences

• Slow thinking

• Robustness

Enhancement

• External Knowledge Integration

• Contextual Relevance / QA Accuracy

Data4LLM: Different Stages of LLM

4. Prompting

• Context Comprehension

• Learn from demo examples

6. Agent

• LLM system equipped with

reasoning, tools, and memory 10

Data4LLM: Data Management Can Benefit LLMs

❑ The LLM life-cycle includes pretraining, fine-tuning (SFT and RLHF),

prompting, RAG, Agent

❑ Effective data management is fundamental to the scalable development
and deployment of LLMs

https://klu.ai/glossary/large-language-model 11

• Data Preparation
• Data Discovery

• Data Selection

• Data Cleaning

• Data Augmentation

• Data Labeling

• Data Synthesis

• Data Processing

• Data Optimization

• Data Storage

• LLM Training

• LLM Serving (Inference)

Data4LLM: Motivation and Opportunities

12

❑ Opportunities of Data4LLM

• Improved Training Efficiency and Cost

• Improved Inference Efficiency

Zhou X, et al. A Survey of LLM x DATA. arXiv, 2025

Data4LLM: Challenges and Solutions

13Zhou X, et al. A Survey of LLM x DATA. arXiv, 2025

Data4LLM

Large amount of

data processing

Gradient-based Selection; Perplexity-based Selection; Model-based Selection …

Difficult to select high-quality pretraining datasets from large datasets

Data Redundancy

Hard to select high-

quality data

Data Mixing

Unpredictable

inference memory

usage

Unpredictable

inference time

consumption

Training inefficiency

Page-based memory allocation; KV Cache Management; Quantization …

Memory usage grows over time and is unpredictable due to the LLM decoding

Request Batching; Request Scheduling; Load Balancing; Speculative Decoding…

Execution time is unpredictable due to the LLM decoding process

Empirical-Determined Methods; Model-Determined Methods …

Weight of different domains of data affects training efficiency and performance

Data Parallelism; Pipeline Parallelism; Checkpointing Methods …

Training LLMs is computationally expensive and time-consuming

MD5 hash; Min hash; Sim hash; Semantic Matching; Bloom Filters …

Redundant data can introduce inefficiency in LLM training and harm performance

Page-based memory allocation; KV Cache Management; Quantization …

Processing massive datasets for LLM training presents scalability challenges

Outline of LLMxData

14

❑ LLM4Data Techniques

• LLM Prompting

• RAG & Vector DB

• Data Agents

• Unstructured Data Analytics

• SQL + Semantics

• Data Lake Analytics

❑ Data4LLM Techniques

• Data Preparation

• LLM Inference

• LLM Training

❑ Open Challenges

Outline of LLMxData

15

❑ LLM4Data Techniques

• LLM Prompting

• RAG & Vector DB

• Data Agents

• Unstructured Data Analytics

• SQL + Semantics

• Data Lake Analytics

❑ Data4LLM Techniques

• Data Preparation

• LLM Inference

• LLM Training

❑ Open Challenges

Challenges of LLM4Data

16

❑ Low Accuracy ❑ High Cost

❑ Hallucination ❑ Limited Reasoning

• Large number of LLM invocations

• Require multi-step reasoning

• Hard for complex tasks

• LLMs may output factual errors

Principles of LLM4Data

17

❑ Reasoning and Self-Reflection

Input SQL:
SELECT … FROM emp WHERE empno IN

(SELECT deptno FROM dept …);

Rewrite Analysis:
… Convert the sub-query into a join

 between the "emp" and "dept" tables …

Rewritten SQL:
SELECT … FROM emp INNER JOIN dept

ON … AND emp.empno=dept.deptno;

· Supervised Finetuning

· Reinforcement Learning

· Active Learning

 …

R-Bot

Case Generation

Databases Rewrite

Engines· PostgreSQL

· MySQL

 … Expert Experience

Rewrite

Rules· Oracle

· SQL Server

 …

Feedbacks

Cases

❑ Involving Domain Knowledge ❑ Cost-Efficiency Optimization

❑ Verification and Reliability

Plan
Optimization

18

Technical Solutions

Approach Definition Purpose Advantages Examples

Pre-training

Initial training on large,

diverse datasets to learn

general patterns.

Establish

foundational

knowledge

Efficient learning;

broad applicability

LLMs like GPT,

DeepSeek

Fine-tuning

Additional training on task-

specific datasets to refine

model performance.

Adaptation to specific

tasks

Improved accuracy for

specific applications

Image classification,

sentiment analysis

Post-training

(RL)

Further training to refine

strategies and

performance.

Optimize decision-

making

Enhanced strategy

refinement; improved

robustness

Game playing,

autonomous

driving

Prompting

Guiding model behavior

using specific input

formatting or instructions.

Directs model output

without retraining

Flexible interaction;

reduced need for

labeled data

Interactive assistant

tasks

RAG

Combines retrieval of

relevant documents with

generation tasks.

Enhances information

retrieval

Access to external data

sources; improved

relevance

Knowledge-based

question answering

Agent
Autonomous systems that

perceive, reason, and act.

Decision-making in

complex scenarios

Real-time interaction;

adaptive strategies

Robotics, automated

trading systems

19

Background of Unstructured Data/Data Lake Analytics

 Large-scale raw data in data lakes

Difficult to conduct data analytics over data lakes

• Structured: relational databases

• Semi-Structured: CSV, JSON, XML

• Unstructured: emails, documents, PDFs

 Challenges

⚫ No schema, hard to analyze

⚫ Hard to understand data semantics
⚫ No plan, hard to conduct data analytics

Summary of Different Data Analytics Methods

20

 LLMs enable semantic data analytics over complex data

⚫ Understand, planning, reasoning

 Queries

⚫ NL: Flexible, can express

semantic conditions

⚫ SQL: Precise with strict

syntax, hard to express

semantic conditions

⚫ Code: Precise with strict

syntax, hard to write

 Data

⚫ Textual Embedding

⚫ Extraction (Unstructure2Structure)

Classification of Unstructured Data/Data Lake Analytics Methods

21

 Structured Information Extraction Manually Write Code

 NL2Pipeline  Data Agent

Category 1: Structured Information Extraction

22

❑ Key idea: Extract structured tables from semi-structured data,

then analyze by SQL

❑ Challenges:

• How to determine the key schema automatically?

• How to improve the accuracy of information extraction?

• How to reduce the cost for structured information extraction?

Summary of Structured Information Extraction Methods

23

• Generate code to extract structured info. from fragments of templatized text

• Leverage common hierarchical structures of headers in templatized docs

• Leverage common visual patterns of templatized documents

❑ Asking LLMs to extract from each document is costly

❑ Common patterns in semi-structured data can be utilized

to reduce the high LLM cost, potential solutions include:

❑ Hard to extract structured tables from documents

❑ Core Idea

❑ Feed sampled documents to the LLM, and prompt it to generate useful information that

can form a structured table (e.g., writing code to extract the values of important attributes)

❑ Unstructured data can thus be analyzed by analyzing structured tables through SQLs

Code Generation for Table Data Extraction from Semi-Structured Data

Arora S, Yang B, Eyuboglu S, et al. Language models enable simple systems for generating structured views of heterogeneous data lakes[J]. VLDB, 2023.

EVAPORATE-CODE+
(Doc2Table)

24

❑Prompt-based Table Data Extraction

❑ Schema Synthesis

❑ With a sampling subset of documents, it prompts LLMs to extract attributes based on

their occurrence frequencies

❑ Rerank the extracted attributes by adjusting their frequency weights with LLMs

❑ Code Synthesis

❑ A heavy job to extract attribute values from every document → Prompt LLM to write

code to extract the attribute values more efficiently

❑ Limitation: require documents follow certain structures (semi-structured)

Code Generation for Table Data Extraction from Semi-Structured Data

Arora S, Yang B, Eyuboglu S, et al. Language models enable simple systems for generating structured views of heterogeneous data lakes[J]. VLDB, 2023.

Function

Prompt

25

Table Data Extraction Based on Hierarchical Structures of Headers

Towards accurate and efficient document analytics with large language models[J]. arXiv preprint arXiv:2405.04674, 2024.

❑ Key Insight:

• Many documents are organized in the same way while with different content, e.g., reports,

• Such templatized documents follow consistent hierarchical structures of headers

❑ Document structure can be represented by a tree

• Nodes correspond to header phrases and sections in the document.

• Edges represent semantic hierarchy (e.g., Section > Subsection >

Paragraph)

• This tree structure can be used for matching across documents

❑ To identify such common structures:

• Sample a subset of documents

• Identify common structures by matching the header

structures extracted by LLMs of the documents

26

Table Data Extraction Based on Hierarchical Structures of Headers

Towards accurate and efficient document analytics with large language models[J]. arXiv preprint arXiv:2405.04674, 2024.

❑ Populating Tables (Structure Tree) from Documents

• Uses LLMs to identify common structures in a sample document

• Uses rule-based identification for other documents based on the identified template

(Assume all documents follow the same template)

❑ Support SQL query (attribute corresponds to certain text span and node)

❑ Limitation: Rely on the assumption of all documents strictly follow the same template

➢ Each node in the structure tree has a summary sketch
(small text and metadata)

➢ Efficiently locate the text span needed in the query

27

Table Data Extraction Based on Visual Patterns

TWIX: Automatically Reconstructing Structured Data from Templatized Documents[J]. arXiv preprint arXiv:2501.06659, 2025.

❑ Semi-structured data contain common visual patterns that store values of certain attributes

❑ Field Prediction: Identify which text phrases within sampled documents are template "Fields" (e.g.,

headers, keys) versus "Values" or "Metadata"

❑ Extract phrases by OCR and check the text content at the same location across different
documents by LLM

❑ Template Assembly: Combine partial fields and identify their nested relationships by LLM

❑ Template-guided Data Extraction: Process other documents based on the identified template

❑ Limitation: Rely on the

assumption of documents strictly

follow the same template (Values

of the same attribute occur at the

same position)

28

Takeaways of Structured Information Extraction Methods

29

❑ Problems:

• Low Generality: Requiring data to follow different degrees of templates, i.e., semi-

structured

• Low Accuracy: The extracted tables are lossy representations of original data

• High Cost: Still lack low-cost methods to capture semantic patterns in unstructured data

❑ Common patterns in semi-structured data can be utilized to avoid LLM calls

⚫ Keyword or data following certain regular expressions can be extracted by simple code

⚫ Structures of headers can segment documents into spans with different semantic

meanings

⚫ Common visual patterns that contain key-value info can be identified by a sample of data

Category 2: Manually Write Code

30

❑ Key idea: Manually orchestrate execution process and conduct semantic

operations following prompts in the code

❑ Challenges:

• How to optimize the efficiency of the manually orchestrated plan?

• How to reduce the LLM cost of the manually orchestrated plan?

Summary of Manually Write Code Methods

31

❑Cost/Efficiency Optimization Methods

⚫ Bypass LLM: Replace expensive LLM invocations with cheap approximate

methods

⚫ Model Cascade: Use LLMs with smaller #parameters instead of large #parameters

⚫ Approximate Processing: Estimate aggregation queries by executing on samples

⚫ Cost-based Optimization: Estimate execution cost to optimize plans

⚫ Query Rewrite: Reduce the amount of data to be processed by LLMs

❑Manually orchestrated plans, though relatively accurate, face

efficiency & cost issues

❑ Many real-world tasks require semantic reasoning over large datasets,

such as summarizing research papers, extracting biomedical insights

❑ Semantic processing is beyond the capability of relational operators

❑ Propose a set of pandas-like semantic operators: support multi-row,

natural language-specified operations over tables

Semantic Operators: A Declarative Model for Rich, AI-based Data Processing. arXiv 2025

Semantic Operators for Tables of Unstructured and Structured Data

32

❑ Definition: Semantic operators are declarative, natural language-

parameterized transformations over data

❑ Users can write pandas-like code to design their data analytics process

Semantic Operators: A Declarative Model for Rich, AI-based Data Processing. arXiv 2025

Semantic Operators for Tables of Unstructured and Structured Data

33

❑ Main idea: Not all cases must be processed by LLMs to get correct result

❑ Use a fast-but-imperfect approximate model to handle easy cases, reserving

the slow-but-accurate model only for hard decisions

❑ Execute on data samples to determine whether to use approximations

❑ Examples:

❑Filter: Use embedding-based classifier or distilled LLMs to filter out obvious

matches/mismatches

❑Join: Use embedding-based similarity to filter tuple pairs

❑ Limitation:

• Optimization degree is low; cannot optimize at the level of plan structure

• Inappropriate adoption of approximation methods results in low accuracy

Semantic Operators: A Declarative Model for Rich, AI-based Data Processing. arXiv 2025

Replace LLMs with Cheaper Approximations for Acceleration

34

UQE: A Query Engine for Unstructured Databases. NeurIPS 2024

Approximate Processing for Accelerating Aggregation Queries

35

❑ Propose stratified sampling for accelerating aggregation queries

❑ Accelerate by reducing the amount of data processed by LLMs

❑ Embed all rows and cluster them into K groups

❑ Perform stratified sampling within clusters to select a small number of rows

❑ Use weighted averaging of sampled results to unbiasedly estimate aggregation queries

❑ UQE enables user to query tables containing unstructured columns by SQL

with semantic predicates

❑ Support semantic predicates by prompting LLMs for processing

unstructured columns

❑Online Active Learning for Non-Aggregation Queries to reduce LLM cost

❑Embed all rows and initialize a lightweight model (randomly initialized)

❑At each step, sample rows with highest predicted relevance (predicted by the lightweight

model, ensure sample effectiveness for exploitation) plus small noise (ensure

diversity of sampled data, for exploration)

❑Call LLMs to label the sampled data and update the lightweight model

❑Repeat above process, and finally process remaining data using the lightweight model

UQE: A Query Engine for Unstructured Databases. NeurIPS 2024

Online Active Learning of Lightweight Model for Non-Aggregation Queries

36

❑Limitation: Hard to collect enough data online for accurate model training, e.g.,
label skewness for extreme selectivity

ELEET: Efficient Learned Query Execution over Text and Tables. VLDB 2025

Pretrain Lightweight Language Models for Querying Tables and Text

37

❑Scenario：Query over both structured tables and unstructured text

❑Relational operators are insufficient to handle unstructured text

❑Method：

❑ Propose multi-modal operators that take documents as input, and output tables

❑ Since the outputs are tables, new operators can be included in the same plan with relational operators

MMOps

❑Using LLMs to implement these operators is costly
❑Pretrain non-autoregressive small language models (SLM) for

acceleration and reduce cost

ELEET: Efficient Learned Query Execution over Text and Tables. VLDB 2025

Pretrain Lightweight Language Models for Querying Tables and Text

38

❑Rather than extracting structured data in advance, ELEET conducts

online information extraction with the SLMs

❑ Key idea: Information in tables can help locate structured information in text

❑ SLMs are more efficient than LLMs, ensuring efficient online extraction

❑ Examples:

❑If the text contains multiple instances (Alice, Bob, Carol…),

structured data (name=Carol) can help identify the target

instance

❑Structured table operations avoid the processing of some

documents (Avoid processing bob.txt and carol.txt)

❑Help extract multiple tuples from a text (multiple diagnosis

for Alice)

ELEET: Efficient Learned Query Execution over Text and Tables. VLDB 2025

Limitation of Specialized Small Language Models

39

❑Cannot support complex semantic analytics

❑ SLMs have weaker semantic understanding ability than LLMs

❑ Only supports operations supported by traditional databases (queries text like tables)

❑Lack world knowledge

❑ SLMs do not have world knowledge like LLMs

❑ Cannot support multi-step logical reasoning with world knowledge

❑Rely on the assumption that attributes in text are known

A DECLARATIVE SYSTEM FOR OPTIMIZING AI WORKLOADS. arXiv 2024

Cost-based Plan Optimization for Improving Performance

40

❑PALIMPZEST allows users to pose AI-powered analytics queries over

collections of unstructured data using declarative APIs

❑ Users manually set target runtime, LLM cost, and result quality

❑ Transforms the program into various equivalent logical plans

❑ Selects the plan with lowest estimated cost under runtime and quality constraint

❑Challenge: Cost

estimation for execution

over unstructured data is

difficult

A DECLARATIVE SYSTEM FOR OPTIMIZING AI WORKLOADS. arXiv 2024

Cost-based Plan Optimization for Improving Performance

41

❑For plan selection, needs to estimate the performance of each plan

❑ In the worst case, requires enumerating an exponentially number of plans

❑Assumption: operators are independent

❑ Estimate each operator, compose operators estimations to estimate plan performance

A DECLARATIVE SYSTEM FOR OPTIMIZING AI WORKLOADS. arXiv 2024

Cost-based Plan Optimization for Improving Performance

42

❑Method:

❑Executes a set of plans on a small set of sampled data

❑Obtain per-operator estimates:

❑ distribution of runtimes, per-record cost and quality of each operator

❑Estimate performance of each plan by composing its per-operator

estimates

❑Sums the runtime

❑Sums the cost

❑Takes the product of their qualities

❑Limitation: Estimation by executing over sampled data is time-consuming and

inaccurate, which limits optimization effectiveness

Takeaways of Manually Write Code Methods

43

➢ Using proxy methods may influence accuracy of the results

➢ Approximate processing is not universal, only support aggregation queries

➢ Cost-based optimization directly relies on the accuracy of cost estimation

• Require cardinality estimation for semantic predicates. Uniform sampling is inaccurate

❑Summary of different optimization methods:

In addition to LLM cost, human cost should also be considered

Limitations of Manually Write Code Methods

44

• Rely on user expertise

• Rely on user’s knowledge of data

• Coding and debugging is time-consuming

◼Users query by writing code I need to write the code
to analyze …

Human cost is too high! Can we make analytics more accessible?

Even though the LLM cost can be optimized…

◼Natural language is a easy way to express analytics queries

✓ Easy to access for users

✓ Low human effort

✓ Difficulties are left to the analytics system

“Daydream”

Category 3: NL2Pipeline

How to answer natural language analytics queries automatically?
45

Category 3: NL2Pipeline

46

❑ Key idea: Predefine the semantic operators and transform the natural

language query into plans composed of the operators for execution

❑ Challenges:

• How to automatically generate plan with correct logic?

• How to optimize the efficiency of the generated plan?

Summary of NL2Pipeline Methods

47

❑Candidate plan generation solutions for NL2Pipeline:

① Use static predefined execution process

② Instruct LLMs to determine the plan by providing descriptions of the

available operator

③ Progressively match appropriate operators for the query

Text2SQL is Not Enough: Unifying AI and Databases with TAG. CIDR 2025

Using Predefined Static Execution Process for Data Analytics

48

TAG: Focus on natural language questions that can be expressed in
relational algebra over tables

Support semantic predicates by UDFs that invoke LLMs

Main idea: Transform the natural language query into SQLs with LLM
UDFs

NL2SQL

RAG

• Cannot handle semantic
predicates

• Support bulk processing

• Cannot Support bulk processing

NL query with semantic
predicates

Table

• Support semantic processing

NL2SQL with

LLM UDFs

Text2SQL is Not Enough: Unifying AI and Databases with TAG. CIDR 2025

Using Predefined Static Execution Process for Data Analytics

49

 Predefined Static Execution Process in TAG:

1. Query Synthesis: Converts the user

query into a SQL and express semantic

predicates as LLM-based UDFs

2. Query Execution: Executes the SQL

query within a database system

3. Answer Generation: Uses an LLM to

generate the final NL answer based on the

user query and retrieved table data

❑ Limitations: Only support queries that can be represented by relational algebra

Do not support multi-step logical reasoning and execution is costly

CAESURA: Language Models as Multi-Modal Query Planners. CIDR 2024

Instruct LLMs to Generate Plans of Multi-Model Large Models

50

❑Problem: Answer natural language queries over multi-modal data including

tables, text, figures

❑Method: Transforms natural language queries into executable multimodal query

plans by prompting LLMs

❑ The prompting is manually designed with multi-phase to improve plan quality

❑ The descriptions of data, available operators and query is included in the designed prompt

CAESURA: Language Models as Multi-Modal Query Planners. CIDR 2024

Instruct LLMs to Generate Plans of Multi-Model Large Models

51

❑Planning: Prompt LLMs to write a

step-by-step logical plan in natural language

❑Mapping: Convert each logical step into an

executable operator (SQL, Python, Visual QA,

etc.)

❑Limitations:

➢ The plans generated by directly prompting

the LLMs suffer from low accuracy

➢ The generated plans are sequential with low

efficiency

❑Multi-phase Prompting

Wang J, Li G. Aop: Automated and interactive llm pipeline orchestration for answering complex queries. CIDR, 2025.

Instruct LLMs to Generate Plans of Semantic Operators

52

❑Problem: Answer natural language
queries over data lakes including
structured, semi-structured and
unstructured data

❑Key idea: human-crafted pipelines are
essentially well-constructed
assemblies of standard semantic
operators

• Identify key operators for building

effective LLM pipelines

• Provide operator descriptions for

orchestrating pipelines by LLMs

Wang J, Li G. Aop: Automated and interactive llm pipeline orchestration for answering complex queries. CIDR, 2025.

Instruct LLMs to Generate Plans of Semantic Operators

53

❑Method:

➢ Instruct LLMs to generate multiple chain-format pipelines by prompts

➢ Optimize the pipelines into DAG structure by analyzing the operator dependencies

➢ Combine different pipelines together

➢ Layer-wise pipeline execution to obtain the final result

❑Benefit: Reduce plan generation complexity as each operator can correctly solve a subtask

❑Limitation: Rely on LLMs to generate plan by prompts, which may be beyond LLM capabilities

Progressively Match Appropriate Operators for the Query

54

❑Unify proposes a set of operators for unstructured data analytics

❑Observation: Each operator corresponds to certain NL expressions

➢ Examples:

Jiayi Wang, et al. Unify: An Unstructured Data Analytics System. (ICDE 2025)

 Filter:

• Questions that are related to football

• Films that have ratings over 8

 Count:

• Number of articles

[Entity] that [Condition]

Number of [Entity]

❑Key idea: Prepare operator expressions for online matching

• Example Query: Number of

films that have ratings over 8

[Entity] that [Condition]Number of [Entity]

FilterCount

Number of [Entity] that [Condition]

Jiayi Wang, et al. Unify: An Unstructured Data Analytics System. (ICDE 2025)

Progressively Match Appropriate Operators for the Query

55

• Overview: progressively identifying appropriate pre-defined logical

operators and reducing the query with the operators.

① Semantic Parsing: extract the logical representations from the query

② Operator Matching: identify the matched logical operators

③ Query Reduction: reduce with the logical operators to generate a plan

④ Error Handling: backtrack to the previous reduction

Count the number of movies

directed by Steven Spielberg

that the number of positive

reports is larger than the

number of negative ones by

their report comments.

Operator Matching

1. Filter

4. Count

2. Compare

Query Reduction

Count the number of movies

directed by Steven Spielberg

that the number of positive

reports is larger than the

number of negative ones by

their report comments.

Next IterationSemantic parsing

3. Groupby

Jiayi Wang, et al. Unify: An Unstructured Data Analytics System. (ICDE 2025)

Cost-based Plan Optimization with More Accurate Cardinality Estimation

56

• Observation: data points satisfying the query often have high semantic

relevance with the query

• Key Ideas:

• Estimation by importance sampling

• Focus more on data points closer to the query vector
Data point not satisfying the query Data point satisfying the queryQuery

(a) Questions related to f ootball (b) I mpor tance Function

f 1

f 2

f 3 f 4

Distance

Jiayi Wang, et al. iDataLake: An LLM-Powered Analytics System on Data Lakes. (IEEE Data Engineering Bulletin 2025)

Optimize Execution Efficiency of Generated Plans

57

• Plan Adjustment During Execution: adjusts the plan dynamically when

operator execution fails or can be replaced by other low-cost operators

• Parallel Execution for low latency

Pipeline Execution

Interactively Check

Topologically

bottom-up

execution

Intermediate

Results

Adjust

Pipeline

Replan

Re-identify

Data

Continue

Execution

Modified

Query

Answer

◼ Problem: How to optimize the execution efficiency of the plan?

Takeaways of NL2Pipeline Methods

58

➢ Static predefined execution process cannot handle complex queries

➢ Directly instructing LLMs to generate pipeline achieves limited accuracy, since

➢ Progressively matching appropriate operators is limited by inflexibility of operaotrs,

strict requirement of intput/output relationship of operators

❑Summary of different pipeline generation methods:

Operators are still not flexible enough and restricts the flexibility of NL

Category 4: Data Agent

59

❑Data Agent: designed to autonomously carry out data-related tasks with

capabilities for knowledge comprehension, automatic planning, and self-

reflection of LLMs

❑ Challenges:

• How can data agents understand queries, data, other agents, and tools?

• How can data agents orchestrate effective and efficient pipelines to bridge

the gaps between user requirements and underlying heterogeneous data?

• How to schedule and coordinate agents/tools to improve effectiveness?

Key Factors of Data Agent

60
Zhaoyan Sun, et al. Data Agent: A Holistic Architecture for Orchestrating Data+AI Ecosystems. (IEEE Data Engineering Bulletin 2025)

 The Data Agent is designed to autonomously carry out data-related tasks with

capabilities for knowledge comprehension, automatic planning, and self-reflection.

A Framework Design of Data Agent

61
Zhaoyan Sun, et al. Data Agent: A Holistic Architecture for Orchestrating Data+AI Ecosystems. (IEEE Data Engineering Bulletin 2025)

 Need to solve challenges in multiple important components:

• Unified semantic catalog, data fabric over heterogeneous data, agent-agent interaction…

Summarization of Unstructured Data / Data Lake Analytics Methods

Method Type Challenges Advantages Drawback

Structured

Information

Extraction

• Determine schema

• Improve extraction

accuracy

• Reduce extraction cost

Fast analytics: Only

involve structured data

Low generalizability: semi-structured

Low accuracy: information loss

High cost: extract large-volume data

Manually

Write Code

• Plan efficiency

• Reduce LLM cost

High accuracy: Human-

craft plans

High human cost: Human-craft

Time-consuming: Coding takes time

NL2Pipeline

• Automatically

generate plans with

correct logic

• Plan efficiency

Ease to use: No human;

NL interface

No Theoretical guarantee: NL is open-

ended and no strict syntax like SQLs

Data Agent

• Understand data and

queries

• Orchestrate plan with

agents

• Coordinate agents

Ease to use: No human

High Flexibility: No need

to maintain operator set

High Generalizability:

Easy to adapt to other

tasks

High LLM cost: a large number of

LLM invocations

Hard to design: Effective agentic

workflow with multiple components is

hard to design
62

Data4LLM

63

❑LLM4Data Techniques

• LLM Prompting

• RAG & Vector DB

• Data Agents

• Unstructured Data Analytics

• SQL + Semantics

• Data Lake Analytics

❑ Data4LLM Techniques

• Data Preparation

• LLM Inference

• LLM Training

❑ Open Challenges

• Data Preparation: Turn big dirty data into a subset of good data

• Challenges

➢ Rely on experts

➢ Time-consuming

➢ Hard to discover the optimal solution

➢ E.g., numerous candidate pipelines

Data Preparation in machine learning life cycle

Data
Selection

Data
Deduplication

Data Preparation Pipeline

Data
Augmentation

Data
Labeling

Data
Mixing

64

Data Selection for LLM

• Data Selection: Obtain reduced representation in volume but produce

similar or even better training results

Step 1: Data Selection

Step 3: Data Quality Evaluation

Source
Data

Heuristic
Rules

Calculate value SelectPretraining
Corpus

High-quality
Data

Quality
Metric

Step 2
Pre-Trainng

Selection
Methods

65

Rule-based Selection

Rule-based Selection: Select desirable data with Heuristic Rules

Rae J W, Borgeaud S, Cai T, et al. Scaling language models: Methods, analysis & insights from training gopher[J]. arXiv preprint arXiv:2112.11446, 2021.

Goals Heuristic Rules

Ensure Text Quality Word Count: 50 - 100,000 words

Proper Word Length Mean Length: 3 - 10 characters

Manage Symbol Use Symbol Ratio: <0.1 for # and ...

Limit List Formatting List Control: <90% bullets start, <30% ellipsis end

Require Alphabetic
Words

Alphabet Presence: 80% of words

Filter Non-Coherent
English

Stop Words: Must have at least two common words

Ensuring data is coherent, contextually rich, free of bias

66

Content-based Selection

Content-based Selection: Select high-quality data (e.g., data edited by

humans; data from trustable sources like peer-reviewed articles)

➢Classification-based : Identify data points that are likely from the same (or similar)

distribution as a known “high-quality” corpus of data points

➢Perplexity-based : Train an LLM and evaluate on the data to achieve higher selection

performance

➢Criteria-based : Use Model to rate multiple documents along various dimensions of

perceived quality → Capture human intuitions about data quality

67

Content-based Selection

Classification-based : Identify data points that are likely from the same (or similar)

distribution as a known “high-quality” corpus of data points

Step 1: Feature Hashing

• Consider text words "the","quick","brown","fox". Using a hashing function, these might be

mapped to indices [5,17,3,12] in a feature vector of size 20.

Step 2: Train Classifier with Curated / Other Pages

• Class 1 (Curated Content): High-quality sources like Wikipedia, books, and selected

websites.

• Class 2 (Other Webpages): Typical webpages found on the internet.

Step 3: Score with the Well-Trained Classifier

• Assigns a quality score to webpages by how similar their content is to the Curated class.

Step 4: Sample using Pareto Distribution

• Balances the inclusion of lower-quality pages to prevent bias:

68

Content-based Selection

Perplexity-based: Train an LLM and evaluate on the data to achieve higher selection

performance

• Sentence example:

• “I love machine learning”

• Calculate conditional probability

• P(i)=0.2

• P(love∣i)=0.1

• P(machine∣i,love)=0.05

• P(learning∣i,love,machine)=0.01

• N=4

Brown T, et al. Language models are few-shot learners[J]. NeurIPS, 2020, 33: 1877-1901.

A model with probability distribution P predicting a

sequence of N words w1, w2, …, wN

69

1

4
(𝑙𝑜𝑔0.2 + 𝑙𝑜𝑔0.1+ 𝑙𝑜𝑔0.05+ 𝑙𝑜𝑔0.01) ≈ −2.8782

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑃 = exp(− −2.8782) ≈ 17.77

Lower perplexity means the model's probability distribution is closer to
the true data distribution

Content-based Selection

Criteria-based: Use Model to rate multiple documents along various dimensions of

perceived quality → Capture human intuitions about data quality

Quality Criteria:

C1. Writing style: With polished or beautiful words

C2. Expertise: The difficulty level of the corpus

C3. Facts & Trivia: With high density of long-tail factual knowledge

C4. Educational value: Includes clear explanations, step-by-step reasoning, or

questions and answers

70

Content-based Selection

Criteria-based : Use Model to rate multiple documents along various dimensions of

perceived quality

• 1. Sample text pairs (A, B) from a vast collection of documents

• 2. With the criteria and a pair (A, B), LLM (e.g., GPT3.5) gives a confidence of B is

better than A, i.e.,

• 3. Generate a dataset of judgement

• 4. Fine-tune a 1.3B Sheared-Llama

• Predict quality ratings under the four criteria

71

Data Deduplication For LLM

Data Deduplication: Training on identical documents slows down training

and may harm the performance → Identify same/similar documents and

retain one

➢ Exact Matching: Leverage MD5 hashing to ensure documents are identical.

➢ Near Matching: Use min-hash/sim-hash to locate overlapped text, measured by
jaccard similarity scores

➢ Semantical Matching: Clustering documents with pretrained embeddings

72

Exact Matching Techniques:

1. URL Deduplication: Remove data that shares the same URL

• Individual web pages may appear multiple times

73

Data Deduplication For LLM

Exact Matching Techniques:

2. Hash Functions: Guarantee to find all exact matches

(1) Initialize a Set for Hashes

A set ~ The hashes of encountered text entries.

(2) Hash Each Text Entry

For each text entry, compute a simple hash (e.g.,

the sum of ASCII values of its characters).

(3) Check for Duplicates

If the hash of the current entry is already in the set, it is a duplicate and will be ignored.

If the hash is not in the set, add the hash to the set and keep the entry.

74

Efficient and Fast, but may find false positives due to hash

collisions and remove non-matching documents

Data Deduplication For LLM

Exact Matching Techniques:

3. Bloom Filters: Space-efficient method using bit arrays for document comparison.

1
75

Highly space-efficiency

But can incorrectly identify non-duplicate documents as duplicates

Data Deduplication For LLM

Approximate Matching Techniques:

1. String Metric Method

• S1: Use MinHash to approximate the Jaccard Index:

• di: The n-grams of document I

• High Jaccard Index indicates high text similarity

76

Data Deduplication For LLM

Approximate Matching Techniques:

1. String Metric Method

• S1: Use MinHash to approximate the Jaccard Index:

• MinHash: Construct document signatures by sorting

 each n-gram via a hash function; Then keep only the

 k smallest hashed n-grams.

77

Data Deduplication For LLM

Approximate Matching Techniques:

1. String Metric Method

• S1: Use MinHash to approximate the Jaccard Index:

• MinHash: Construct document signatures by sorting

 each n-gram via a hash function; Then keep only the

 k smallest hashed n-grams.

• These MinHash fingerprints are then partitioned

 into r bucket (with b hashes per bucket).

• In each bucket, the b hashes are augmented into one value.

• If two documents have the same value in at least one

bucket, they’ll be marked as a potential match.

78

Data Deduplication For LLM

Approximate Matching Techniques:

2. Model-based Method: Use pretrained models for semantic deduplication

• S1: Leverage embedding spaces created by pre-trained LLM, providing a

semantically meaningful distance metric for identifying duplicates

• S2: Each data point is embedded using the LLM

• S3: The embedded data points are clustered using k-means

• S4: Within each cluster, pairwise cosine similarities between

 data points are calculated.

• S5: For identified duplicates within a cluster, only the point with

 the lowest cosine similarity to the cluster centroid is kept, and the others are

removed.

79

Data Deduplication For LLM

Data Augmentation For LLM

Data Augmentation: Find auxiliary data which most resembles the distribution of desired

data distribution (e.g., medicine or law).

80

Data Augmentation For LLM

Challenge: How to select high-quality pretraining datasets?

• Data Augmentation: The goal is to find the auxiliary data which most resembles the

distribution of in-domain data.

• Domain-Specific Selection: Let I be in-domain dataset, N be general purpose dataset, NI

be a subset of N that is in-domain that we wish to discover. The probability of “a data

point x(i) drawn randomly from N being in NI” is:

• Train models to estimate for P(x(i)|I) and P(x(i)|N) on I and a sample of N

• is approximated by , i.e., the cross-entropy loss from

models trained on I and N.

Moore-Lewis
selection

81

Data Mixing For LLM

Data Preparation: Turn big dirty data into a subset of good data

• Data Mixing: Data mixing optimizes the weighting of different data domains in training

corpora to enhance model training efficiency and performance.

82

Data Mixing For LLM

Challenge: How to select high-quality pretraining datasets?

• Data Mixing: Determine the optimal domain ratios to improve the training efficiency and

model performance

• Empirical-Determined Method

• Rule 1: Prevent small sources (e.g., MultiUN) from oversampled;

• Rule 2: Large proportion of code (e.g., 50%) does not harm to NL performance, and

can benefit reasoning-based tasks;

• Rule 3: Test different combinations over small-sized LLMs like 1B parameters.

Nan Du, et al. GLaM: Efficient scaling of language models with mixture-of-experts . ICML, 2022.
83

Data Mixing For LLM

Challenge: How to select high-quality pretraining datasets?

• Data Mixing: Determine the optimal domain ratios to improve the training efficiency and

model performance

• Model-Determined Method: Optimize the ratios assigned to different domains in training

a model without relying on downstream tasks

• Optimize domain ratios using a small proxy model

• Train a larger model using the optimized domain ratios

Sang Michael Xie, Hieu Pham , et al. Doremi: Optimizing data mixtures speeds up language model pretraining . NeurIPS, 2023.

Minimize the maximum loss across all domains

84

Data4LLM

85

❑ Data Management tasks

❑ LLM4Data Techniques

• LLM Prompting

• RAG & Vector DB

• Data Agents

• Unstructured Data Analytics

• SQL + Semantics

• Data Lake Analytics

❑ Data4LLM Techniques

• Data Preparation

• LLM Inference

• LLM Training

❑ Open Challenges

DB Query Processing vs LLM Inference

86
LLM inference has the same goal as DB query processing

Inference System

Clients

Prompts Responses

SQL Prompt

Goal

Minimize latency

Maximize throughput

 Goal

Database

Engine

LLM

Inference

Engine

Minimize latency

Maximize throughput

Result Result

DB Query Processing LLM Inference

How to Reduce LLM Inference Latency and Improve Throughput?

87

Inference System

Clients

Prompts Responses

Q1: How to reduce latency for a single query on one GPU?

Q2: How to optimize throughput for multiple queries on one GPU?

Q3: How to optimize throughput for multiple queries on multiple GPUs?

• KV cache

• Quantization

• Memory-optimized model

• Speculation

• Page-based memory allocation

• Cache persistence and sharing

• KV cache eviction/offloading

• Request batching

• Request scheduling

• Load balancing

• Disaggregated prefilling and decoding

How to Reduce LLM Inference Latency and Improve Throughput?

88

Inference System

Clients

Prompts Responses

Q1: How to reduce latency for a single query on one GPU?

Q2: How to optimize throughput for multiple queries on one GPU?

Q3: How to optimize throughput for multiple queries on multiple GPUs?

• KV cache

• Quantization

• Memory-optimized model

• Speculation

• Page-based memory allocation

• Cache persistence and sharing

• KV cache eviction/offloading

• Request batching

• Request scheduling

• Load balancing

• Disaggregated prefilling and decoding

Background: LLM Inference Process

89

Predict next token until it
• Generates certain ending tokens

• Reaches its pre-defined maximum length

➢ Output:

Hao Zhang. Recent Advance on Large Language model Inference and Serving. 2025

➢ Input:

For each LLM request

• Input: a text string (prompt)

• Output: a text string with
non-deterministic length

EOS

Background: LLM Inference Process

90
Ashish Vaswani et al. Attention Is All You Need. NeurIPS 2017

 A request consists of an initial input (called prompt or prefix)

 The response is a completed sequence

 For each , it requires one execution of the model over all previous tokens

The output sequence is formed one token at a time by feeding previous

tokens

Background: LLM Request Processing Process Zoom-in

91

 Attention Computation

Expensive to recompute all K and V for generating each

for all

 To compute , it needs

Ashish Vaswani et al. Attention Is All You Need. NeurIPS 2017

Use KV Cache to Avoid Recomputation

92

Key idea: Store K and V to avoid recomputation

Storing intermediate vector representations of tokens takes dynamic memory

W
Q

W
K

W
V

A
tt

en
tio

nThe

cat

sat

on

Linear Transform

La
ye

r
i “mat”

the

(a) Without Cache

Large amount of computation

W
Q

W
K

W
V

A
tt

en
tio

n

the

Linear Transform

Th
e

cat

sat

onK
V

 C
ac

h
e

= Cached Key/Value

“mat”

La
ye

r
i

(b) With KV Cache

= Input Embedding
 (e.g. raw)

= Contextualized
 Embedding

= Delta Vector

= Query Vector

= Key/Value Vector

= Query Vector

Directly reuse computed KV

= Key/Value to compute

93
Zhou Z, Ning X, Hong K, et al. A survey on efficient inference for large language models[J]. arXiv preprint arXiv:2404.14294, 2024.

 Pre-filling (Compute bound)

• Process all input tokens at once

• Compute K and V for all input tokens in the prompt

 Decoding (Memory bound)

• Generate a single token based on previous tokens

• Compute Q for current status

• After generating the new token, add its K and V to KV cache

Key idea: Store K and V to avoid re-computation

Limitation: Can result in large memory consumption if the sequence is very long

Need KV cache eviction/offloading for multiple queries due to limited memory

See solutions in later slides

Use KV Cache to Avoid Recomputation

Quantization Techniques for Model Compression

Key idea: Lower the numerical precision to enable compact data formats

Can reduce the physical byte sizes of:

• Weight matrices

• Embedding vectors

• Intermediate activations

• Cache entries

94
Yuan Z, Shang Y, Zhou Y, et al. Llm inference unveiled: Survey and roofline model insights[J]. arXiv preprint arXiv:2402.16363, 2024.

GPUs perform better when processing data with smaller bit widths:

• E.g., on NVIDIA’s A6000 GPU

• 155 TOPS/s for FP16

• 310 TOPS/s for INT8

• Speed up general matrix multiplication

N: Number of bits

Limitation: Quantization may influence model quality

Optimized Model Structure – Sparse Attention

Child R, Gray S, Radford A, et al. Generating long sequences with sparse transformers[J]. arXiv preprint arXiv:1904.10509, 2019.

Key idea: Omit certain attention calculations

Method:

• Compute the attention status only for certain tokens

• Discover these significant keys through:

• Static filtering (e.g., windowed, strided)

• Query-dependent masks (e.g., learning-based)

• K-nearest neighbor search indexes

Basic Attention Sparse Attention

95

Limitation: Hurt inference accuracy

Optimized Model Structure – Mixture of Experts

Shazeer N, Mirhoseini A, Maziarz K, et al. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer ICLR, 2017.

Key idea: Allocate varying computation budgets to different tokens

Method:

• Replace network with a set of smaller networks (experts)

• During inference, selectively activates specific experts controlled by router

• Since each expert is much smaller than the original network, compute cost
can be substantially reduced

96

Limitations:

• Routing Instability

• Load Imbalance

MOE是否只对FFN

Speculative Decoding

Leviathan Y, Kalman M, Matias Y. Fast inference from transformers via speculative decoding[C]//International Conference on Ma chine Learning. PMLR, 2023

Example:

• A landmark in Paris is the Eiffel [Tower]

97

Can be accurately predicted

by a small model

Key idea: use a smaller, faster model to generate draft tokens that are then
verified in parallel by the LLM

How to leverage cheap models to accelerate decoding?

Speculative Decoding

Xia H, Yang Z, Dong Q, et al. Unlocking efficiency in large language model inference: A comprehensive survey of speculative decoding[J]. arXiv, 2024.

Key idea: use a smaller, faster model to generate draft tokens that are then
verified in parallel by the LLM

98

➢Method:

1. Approximate the next b tokens using a
small language model

2. Verify drafts by LLM in parallel

3. Accept verified tokens and Iteratively
repeat above process until reaching end
of sequence

Limitation: Incur redundant computation and low-quality draft model may not be accurate

Takeaways

99

Inference System

Clients

Prompts Responses

• KV cache management

• Quantization

• Memory-optimized model

• Speculative decoding

KV Cache
• Pros: Avoid recomputation, thus more efficient
• Cons: Increased memory usage for multiple queries

Quantization
• Pros: Higher efficiency, less memory consumption

• Cons: Influence model quality

Memory-optimized model
• Pros: Higher efficiency, less memory consumption

• Cons: Influence model quality

Speculation
• Pros: May bring lower latency by parallel token generation

• Cons: Incur redundant computation

Q1: How to reduce latency for a single query on one GPU?

How to Reduce LLM Inference Latency and Improve Throughput?

100

Inference System

Clients

Prompts Responses

Q1: How to reduce latency for a single query on one GPU?

Q2: How to optimize throughput for multiple queries on one GPU?

Q3: How to optimize throughput for multiple queries on multiple GPUs?

• KV cache

• Quantization

• Memory-optimized model

• Speculation

• Page-based memory allocation

• Cache persistence and sharing

• KV cache eviction/offloading

• Request batching

• Request scheduling

• Load balancing

• Disaggregated prefilling and decoding

Page-based Memory Allocation

101

Wasted Memory:

Reservation: not being used now, but can actually be used by short
requests

 Internal fragmentation: over-allocated due to the unknown output length

External fragmentation: gap between memory regions allocated to
different queries

Hao Zhang. Recent Advance on Large Language model Inference and Serving. 2025

Motivation

Page-based KV Cache Memory Allocation

102

Key idea: Divide memory into blocks similar to virtual memory

and paging in OS, and allocate in this granularity

Page-based memory

management in OS

Page-based memory

management in LLM serving

Hao Zhang. Recent Advance on Large Language model Inference and Serving. 2025

跟os的不同

Page-based KV Cache Memory Allocation

103

 Ensures bounded internal

fragmentation
• Only happens at the last block of a

sequence

• The wasted memory of a single query is

bounded by block size

 Eliminate external

fragmentation

Internal fragmentation
Limitation: Requires rewriting attention kernels

 Token Block: Each token block is a fixed-size contiguous

chunk of memory that can store token states from left to right

KV Cache Eviction/Offloading for Multiple Queries

104Qin R, Li Z, He W, et al. Mooncake: A kvcache-centric disaggregated architecture for llm serving[J]. arXiv preprint arXiv:2407.00079, 2024.

➢ Eviction: Need recomputation to recover

➢ Offloading: Can be tranferred back to GPU from other memory

containers (e.g. CPU)

 Strategies:
➢ Least recently used

➢ Least frequently used

➢ All-or-nothing (vLLM)

 Key idea: Make room by evicting non-critical cache

Limitation: May hurt latency for each single query due to the cost of cache recovery

Cache Sharing for Improving Efficiency

Prefix Sharing:

• Reuse persisted cache entries under exact-match prefixes

• Can only reuse prefix’s KV cache, since prefix matching requirement is strict

Selective Reconstruction:

• Reuse all KV cache but re-computing a small fraction of KV

• Mitigate quality degradation by recomputing KV for a subset of impactful
tokens

Yao J, et al. CacheBlend: Fast large language model serving for RAG with cached knowledge fusion, Eurosys 2025 105

Key idea: Reuse computed results of previous requests

Too strong
requirement

May hurt
accuracy

LLM Request Batching – Static Batching

❑Key idea: Batching requests together to improve GPU utilization

Requests may complete at different iterations, which results in low

throughput due to:

Wasted!

❑Key idea: Batching requests together to improve GPU utilization

Requests may complete at different iterations, which results in low

throughput due to:

• Idle GPU cycles

• New requests cannot start immediately

Req 1 Req 2 Req 3 Req 4
Time

End

End

End

End

Req 5

End

(1) New requests cannot start

immediately

(2) Idle GPU

cycles

Batch

End

106

LLM Request Batching – Continuous Batching

❑Key idea: Different requests can be batched at the iteration level

❑Benefits:

Yu, G. I., Jeong, J. S., Kim, G. W., Kim, S., Chun, B. G. “Orca: A Distributed Serving System for Transformer -Based Generative Models” (OSDI 22)

Limitation: Batching a prefill step with a decode step can stall the decoding

A prefilling step handles

input prompt

Long computing time

A decoding step

generates a token

Much less time

End

Req 1 Req 2 Req 3 Req 4
Time

End

End

End

End

Req 5

Batch

End

• Higher GPU utilization, thus higher throughput

• New requests can start immediately

107

LLM Request Batching – SplitFuse (Chunked Prefill)

❑Key idea: Split prompt into chunks, and batch together chunked

prefilling steps and decoding steps

❑Benefit:

• Remove stalls from new requests (for prefilling)

Agrawal A, Kedia N, Panwar A, et al. Taming {Throughput-Latency} tradeoff in {LLM} inference with {Sarathi-Serve}, OSDI 24. 2024: 117-134.

Limitation: The request latency of individual query can be harmed

Prefill

Long

Prompt

Split
Prefill

Chunk

1

Prefill

Chunk

2

Prefill

Chunk

3

Can be better

batched with

decoding steps

LLM Request Scheduling

❑ Background:

➢ In some cases, the rate of requests exceeds the throughput of the system,

even under batching

➢New requests must wait in a queue before being processed

➢ The order of executing requests determines efficiency

Req 1 Req 2

Req 1Req 2

Solution 1

Solution 2

109

LLM Request Priority – Shortest Job First

❑ Problem Statement

Given a set of requests, find an optimal ordering that minimizes the average latency

• Ask the LLM, “How long will this prompt take?”

• Train an Estimator

• Using embeddings from last layer of LLM

• Using small language model

• Shortest prompts first

• Max cache reuse

❑Basic Method: First-Come First-Serve

❑Greedy Techniques:

110Limitation: Requires accurate predictions regarding the number of decoding rounds

Takeaways

111

Inference System

Clients

Prompts Responses

• KV cache management

• Quantization

• Memory-optimized model

• Speculative decoding

Page-based memory allocation
Pros: Reduce waste of memory

Cons: Require rewriting attention kernels

Cache persistence and sharing
Pros: Higher efficiency by reusing cache

Cons: Influence result quality

KV cache eviction and offloading
Pros: Less memory consumption

Cons: May hurt latency for individual query due to the cache recovery cost

Request batching
Pros: Higher utilization of GPUs, thus higher throughput

Cons: May hurt latency of individual query

Request Scheduling
Pros: Reduce average latency

Cons: Inappropriate scheduling results in low efficiency

Q2: How to optimize throughput for multiple queries on one GPU?

How to Reduce LLM Inference Latency and Improve Throughput?

112

Inference System

Clients

Prompts Responses

Q1: How to reduce latency for a single query on one GPU?

Q2: How to optimize throughput for multiple queries on one GPU?

Q3: How to optimize throughput for multiple queries on multiple GPUs?

• KV cache

• Quantization

• Memory-optimized model

• Speculation

• Page-based memory allocation

• Cache persistence and sharing

• KV cache eviction/offloading

• Request batching

• Request scheduling

• Load balancing

• Disaggregated prefilling and

decoding

LLM Request Load Balancing

❑ Problem Statement

• Given requests arriving online, assign them to workers (e.g. node or GPU)

while maximizing throughput over the workload, subject to constraints (e.g.

latency SLOs)

Worker

1

Worker

n

Req 1

Req 2 ..
.

Req 3

113

LLM Request Load Balancing Methods

❑ Technique 1: Greedy Matching

• Max cache reuse

• To avoid long TTFT due to sow prefills

• Least load

• To avoid unexpected TTFT, TBT

• Memory usage, running reqs, etc.
Fig: SAL’s Load estimate equation

• Aggregate score

• Make a more precise estimate of TTFT and TBT

• Cache construction cost, cache transfer, est. waiting time, etc.

114

Limitation: Greedy strategy may result in ineffective load balancing

LLM Request Load Balancing Methods

❑ Technique 2: Rebalancing

• Periodically rebalance by moving KV
cache to new worker

• Avoid long TTFT due to slow prefills

• Cache Migration

• To avoid memory thrashing

(unexpected OOM due to long
decode of past or current requests)

• How to migrate?
• Physically move the entries, OR

• Recalculate from scratch (prefill)

115Qianli L, Zicong H, Fahao C, et al. Mell: Memory-Efficient Large Language Model Serving via Multi-GPU KV Cache Management[J]. arXiv preprint arXiv:2501.06709, 2025.

Limitation: Incur communication cost for cache migration

Disaggregated Prefilling and Decoding

116

Pre-filling Worker Decoding

Worker

Key idea: Process prefilling and decoding independently based on

their characteristics (compute bound vs memory bound)

Remove the interference between these two steps

Zhou Z, Ning X, Hong K, et al. A survey on efficient inference for large language models[J]. arXiv preprint arXiv:2404.14294, 2024.

Request

Optimize separately

Limitation: May not utilize cache locality and incur communication

overhead that should be considered

Takeaways

117

Inference System

Clients

Prompts Responses

• KV cache management

• Quantization

• Memory-optimized model

• Speculative decoding

Load balancing
• Pros: Better utilization of computing resources, thus higher throughput
• Cons: Rely on effective scheduler that is hard to design

Disaggregated prefilling and decoding
• Pros: Improve hardware utilization based on features of these two

stages

• Cons: High communication cost

Q3: How to optimize throughput for multiple queries on multiple GPUs?

Data4LLM

118

❑ Data Management tasks

❑ LLM4Data Techniques

• LLM Prompting

• RAG & Vector DB

• Data Agents

• Unstructured Data Analytics

• SQL + Semantics

• Data Lake Analytics

❑ Data4LLM Techniques

• Data Preparation

• LLM Inference

• LLM Training

❑ Open Challenges

Overview of LLM Training

The costly training is dealing with:

• Large model sizes (10B+)

• Large dataset sizes (more than 1T tokens for pretraining, more than

1M for supervised fine-tuning)

• Optimizer states (e.g., momentum, variance) also doubles the space

• Distributed training strategies are required

119
Crucial to reduce the unnecessary redundancy in the training process!

Li W, Chen X, Shu H, et al. ExCP: Extreme LLM checkpoint compression via weight-momentum joint shrinking. arXiv 2024.

Parallel Training Strategies

120
Different parallelism strategies can be combined for better throughput gains

Chenyan Xiong. Scaling Up LLM Pretraining: Parallel Training, 2023

Key Problem: need smart distributed training strategies, where each
GPU worker only deals with a fraction of training state and data

Data Parallel Model Parallel Tensor Parallel

Each worker gets a subset of mini-batch data,
computes the gradients on the data, average gradients

across workers

Split network by layers and place
different model layers on different workers

Split network tensors and place different
parts on different workers

121

Open Challenges

❑LLM4Data Techniques

• LLM Prompting

• RAG & Vector DB

• Data Agents

• Unstructured Data Analytics

• SQL + Semantics

• Data Lake Analytics

❑ Data4LLM Techniques

• Data Preparation

• LLM Inference

• LLM Training

❑ Open Challenges

❑ LLM4Data

✓ Data Agent

✓ Foundation Model for Data

❑ Data4LLM

✓ Data Fabric

✓ Data Flywheel

❑ Data + LLM

✓ Data + LLM Codesign

Open Challenges

122

① LLM4Data: Data Agent

123

❑ Data Analytics Agent

✓ Unstructured Data Agent

✓ Semantic Structured Data Agent

✓ Data Lake Agent

✓ Multi-Modal Data Agent

❑ Data Science Agent

❑ DBA Agent

❑ Database Development Agent

② LLM4Data: Foundation Models for Data

124

 Case-by-Case LLM Finetuning → Database-Specific LLM Construction

➢ Pretrain: Collect sufficient database-domain tokens (e.g., in millions) as pre-training

corpora from sources like database textbook and query analysis

➢ Finetune: Instruction Understanding in SQL / Text → Basic Q&A (DB / Product /

Instance) → Task-Solving in DB Domains → Alignment to Database Experts

➢ Evaluation: Evaluate the accuracy and robustness of the database model with

carefully-crafted validation dataset, measuring metrics, and end-to-end testbed.

General Q&A Product Q&A Instance Q&A

Diagnosis SQL Rewrite Config Tuning

Database Specific LLM

③ Data4LLM: Data Fabric

125

• Unified Data Access: Provides a single, consistent interface for accessing

data, facilitates real-time data access and sharing across the organization.

• Semantic Catalog and Semantic Data Organization

• Active Meta Data Management and Update

• Data pipelines

• Data Lineage and Provenance

• Support for Diverse Tools

• Self-Service Analytics

④ Data4LLM: Data Flywheel

126

❑ Feedback Loop

❑ Data Augmentation

❑ Feature Augment

❑ Data Reflection

❑ Feedback Optimization

❑ Continuous Improvement

⑤ Data + LLM: Co-design

127

❑ Data + AI Model

❑ Iterative Loop

❑ Data + AI Ops

❑ Data + AI Infrastructure

❑ Data Designer

128

Thanks!
Slides: https://dbgroup.cs.tsinghua.edu.cn/ligl/activities.html

Data+AI Paper List: https://github.com/code4DB/LLM4DB

System: https://github.com/TsinghuaDatabaseGroup/Unify

https://dbgroup.cs.tsinghua.edu.cn/ligl/activities.html
https://github.com/code4DB/LLM4DB
https://github.com/TsinghuaDatabaseGroup/Unify

❑ Pretrain LLM as the foundation model for database

133

Technical Solution - LLM Pre-Training

Transformer-based LLM:
Predict the next word given
a sequence of previous text

134

Technical Solution - LLM Finetuning

❑ Finetune LLM over labeled dataset to learn instruction-following
and task-specific knowledge

Preference

Alignment

135

Technical Solution - Prompt for LLM Inference

❑ Input text for LLM to generate response or execute a task

• Simple Prompt

• (task) "Explain the theory of relativity."

• Contextual Prompt

• (context) "A high school student is studying physics for the first time and is

curious about fundamental theories.”

• (task) "Explain the theory of relativity in a way that a beginner can understand.”

• Contextual Prompt with Instructions

• (context) "A high school student is studying physics ...”

• (task) "Explain the theory of relativity ...”

• (instructions) ”1. Make sure the explanation is clear and engaging for someone

new to physics; 2. Limit the explanation to a few paragraphs.”

• Contextual Prompt with Instructions + Demonstration

Examples …

136

Technical Solution - LLM Based Autonomous Agent

❑ LLM Agent: Perceiving the surrounding environment, planning,

executing actions to complete tasks, and memorize past executions

Lei Wang et al. A Survey on Large Language Model based Autonomous Agents. arXiv 2023.

Technical Solution - RAG for LLM Inference

❑ Drawbacks of LLMs

• Hallucination

• Outdate information

• Low efficiency in LLM training

• Weak reasoning capability

❑ Practical Requirements

• Domain-Specific Accurate Q&A

• Frequent Data Update

• Explainability of Responses

• Controllable Cost

• Data Privacy Protection

137

Technical Solutions of LLM4Data

138

LLM Pre-Training

LLM Finetuning

LLM + RL

Prompt for LLM Inference

RAG for LLM Inference

LLM Based Autonomous Agent

Offline

Pretraining

Online

Serving

Continuous

Training

	默认节
	Slide 1

	motivation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

	overview
	Slide 14

	Data Tasks
	Slide 15

	challenges
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

	1-extract
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

	2-manual
	Slide 30
	Slide 31

	LOTUS
	Slide 32
	Slide 33
	Slide 34

	UQE
	Slide 35
	Slide 36

	ELEET
	Slide 37
	Slide 38
	Slide 39

	PALIMPZEST
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

	3-NL2Pipeline
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

	4-Data Agent
	Slide 59
	Slide 60
	Slide 61

	Summary
	Slide 62

	Data4LLM
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138

